1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#![cfg_attr(feature = "cargo-clippy", allow(many_single_char_names))]

use simd::u32x4;
use consts::{BLOCK_LEN, K32X4};
use block_buffer::byteorder::{BE, ByteOrder};

/// Not an intrinsic, but works like an unaligned load.
#[inline]
fn sha256load(v2: u32x4, v3: u32x4) -> u32x4 {
    u32x4(v3.3, v2.0, v2.1, v2.2)
}

/// Not an intrinsic, but useful for swapping vectors.
#[inline]
fn sha256swap(v0: u32x4) -> u32x4 {
    u32x4(v0.2, v0.3, v0.0, v0.1)
}

/// Emulates `llvm.x86.sha256msg1` intrinsic.
// #[inline]
fn sha256msg1(v0: u32x4, v1: u32x4) -> u32x4 {

    // sigma 0 on vectors
    #[inline]
    fn sigma0x4(x: u32x4) -> u32x4 {
        ((x >> u32x4( 7,  7,  7,  7)) | (x << u32x4(25, 25, 25, 25))) ^
        ((x >> u32x4(18, 18, 18, 18)) | (x << u32x4(14, 14, 14, 14))) ^
         (x >> u32x4( 3,  3,  3,  3))
    }

    v0 + sigma0x4(sha256load(v0, v1))
}

/// Emulates `llvm.x86.sha256msg2` intrinsic.
// #[inline]
fn sha256msg2(v4: u32x4, v3: u32x4) -> u32x4 {

    macro_rules! sigma1 {
        ($a:expr) => ($a.rotate_right(17) ^ $a.rotate_right(19) ^ ($a >> 10))
    }

    let u32x4(x3, x2, x1, x0) = v4;
    let u32x4(w15, w14, _, _) = v3;

    let w16 = x0.wrapping_add(sigma1!(w14));
    let w17 = x1.wrapping_add(sigma1!(w15));
    let w18 = x2.wrapping_add(sigma1!(w16));
    let w19 = x3.wrapping_add(sigma1!(w17));

    u32x4(w19, w18, w17, w16)
}

/*
/// Performs 4 rounds of the SHA-256 message schedule update.
fn sha256_schedule_x4(v0: u32x4, v1: u32x4, v2: u32x4, v3: u32x4) -> u32x4 {
    sha256msg2(sha256msg1(v0, v1) + sha256load(v2, v3), v3)
}*/

/// Emulates `llvm.x86.sha256rnds2` intrinsic.
// #[inline]
fn sha256_digest_round_x2(cdgh: u32x4, abef: u32x4, wk: u32x4) -> u32x4 {

    macro_rules! big_sigma0 {
        ($a:expr) => (($a.rotate_right(2) ^ $a.rotate_right(13) ^ $a.rotate_right(22)))
    }
    macro_rules! big_sigma1 {
        ($a:expr) => (($a.rotate_right(6) ^ $a.rotate_right(11) ^ $a.rotate_right(25)))
    }
    macro_rules! bool3ary_202 {
        ($a:expr, $b:expr, $c:expr) => ($c ^ ($a & ($b ^ $c)))
    } // Choose, MD5F, SHA1C
    macro_rules! bool3ary_232 {
        ($a:expr, $b:expr, $c:expr) => (($a & $b) ^ ($a & $c) ^ ($b & $c))
    } // Majority, SHA1M

    let u32x4(_, _, wk1, wk0) = wk;
    let u32x4(a0, b0, e0, f0) = abef;
    let u32x4(c0, d0, g0, h0) = cdgh;

    // a round
    let x0 = big_sigma1!(e0)
        .wrapping_add(bool3ary_202!(e0, f0, g0))
        .wrapping_add(wk0)
        .wrapping_add(h0);
    let y0 = big_sigma0!(a0).wrapping_add(bool3ary_232!(a0, b0, c0));
    let (a1, b1, c1, d1, e1, f1, g1, h1) =
        (x0.wrapping_add(y0), a0, b0, c0, x0.wrapping_add(d0), e0, f0, g0);

    // a round
    let x1 = big_sigma1!(e1)
        .wrapping_add(bool3ary_202!(e1, f1, g1))
        .wrapping_add(wk1)
        .wrapping_add(h1);
    let y1 = big_sigma0!(a1).wrapping_add(bool3ary_232!(a1, b1, c1));
    let (a2, b2, _, _, e2, f2, _, _) =
        (x1.wrapping_add(y1), a1, b1, c1, x1.wrapping_add(d1), e1, f1, g1);

    u32x4(a2, b2, e2, f2)
}

/// Process a block with the SHA-256 algorithm.
fn sha256_digest_block_u32(state: &mut [u32; 8], block: &[u32; 16]) {
    let k = &K32X4;

    macro_rules! schedule {
        ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => (
            sha256msg2(sha256msg1($v0, $v1) + sha256load($v2, $v3), $v3)
        )
    }

    macro_rules! rounds4 {
        ($abef:ident, $cdgh:ident, $rest:expr) => {
            {
                $cdgh = sha256_digest_round_x2($cdgh, $abef, $rest);
                $abef = sha256_digest_round_x2($abef, $cdgh, sha256swap($rest));
            }
        }
    }

    let mut abef = u32x4(state[0], state[1], state[4], state[5]);
    let mut cdgh = u32x4(state[2], state[3], state[6], state[7]);

    // Rounds 0..64
    let mut w0 = u32x4(block[3], block[2], block[1], block[0]);
    rounds4!(abef, cdgh, k[0] + w0);
    let mut w1 = u32x4(block[7], block[6], block[5], block[4]);
    rounds4!(abef, cdgh, k[1] + w1);
    let mut w2 = u32x4(block[11], block[10], block[9], block[8]);
    rounds4!(abef, cdgh, k[2] + w2);
    let mut w3 = u32x4(block[15], block[14], block[13], block[12]);
    rounds4!(abef, cdgh, k[3] + w3);
    let mut w4 = schedule!(w0, w1, w2, w3);
    rounds4!(abef, cdgh, k[4] + w4);
    w0 = schedule!(w1, w2, w3, w4);
    rounds4!(abef, cdgh, k[5] + w0);
    w1 = schedule!(w2, w3, w4, w0);
    rounds4!(abef, cdgh, k[6] + w1);
    w2 = schedule!(w3, w4, w0, w1);
    rounds4!(abef, cdgh, k[7] + w2);
    w3 = schedule!(w4, w0, w1, w2);
    rounds4!(abef, cdgh, k[8] + w3);
    w4 = schedule!(w0, w1, w2, w3);
    rounds4!(abef, cdgh, k[9] + w4);
    w0 = schedule!(w1, w2, w3, w4);
    rounds4!(abef, cdgh, k[10] + w0);
    w1 = schedule!(w2, w3, w4, w0);
    rounds4!(abef, cdgh, k[11] + w1);
    w2 = schedule!(w3, w4, w0, w1);
    rounds4!(abef, cdgh, k[12] + w2);
    w3 = schedule!(w4, w0, w1, w2);
    rounds4!(abef, cdgh, k[13] + w3);
    w4 = schedule!(w0, w1, w2, w3);
    rounds4!(abef, cdgh, k[14] + w4);
    w0 = schedule!(w1, w2, w3, w4);
    rounds4!(abef, cdgh, k[15] + w0);

    let u32x4(a, b, e, f) = abef;
    let u32x4(c, d, g, h) = cdgh;

    state[0] = state[0].wrapping_add(a);
    state[1] = state[1].wrapping_add(b);
    state[2] = state[2].wrapping_add(c);
    state[3] = state[3].wrapping_add(d);
    state[4] = state[4].wrapping_add(e);
    state[5] = state[5].wrapping_add(f);
    state[6] = state[6].wrapping_add(g);
    state[7] = state[7].wrapping_add(h);
}

/// Process a block with the SHA-256 algorithm. (See more...)
///
/// Internally, this uses functions which resemble the new Intel SHA instruction
/// sets, and so it's data locality properties may improve performance. However,
/// to benefit the most from this implementation, replace these functions with
/// x86 intrinsics to get a possible speed boost.
///
/// # Implementation
///
/// The `Sha256` algorithm is implemented with functions that resemble the new
/// Intel SHA instruction set extensions. These intructions fall into two
/// categories: message schedule calculation, and the message block 64-round
/// digest calculation. The schedule-related instructions allow 4 rounds to be
/// calculated as:
///
/// ```ignore
/// use std::simd::u32x4;
/// use self::crypto::sha2::{
///     sha256msg1,
///     sha256msg2,
///     sha256load
/// };
///
/// fn schedule4_data(work: &mut [u32x4], w: &[u32]) {
///
///     // this is to illustrate the data order
///     work[0] = u32x4(w[3], w[2], w[1], w[0]);
///     work[1] = u32x4(w[7], w[6], w[5], w[4]);
///     work[2] = u32x4(w[11], w[10], w[9], w[8]);
///     work[3] = u32x4(w[15], w[14], w[13], w[12]);
/// }
///
/// fn schedule4_work(work: &mut [u32x4], t: usize) {
///
///     // this is the core expression
///     work[t] = sha256msg2(sha256msg1(work[t - 4], work[t - 3]) +
///                          sha256load(work[t - 2], work[t - 1]),
///                          work[t - 1])
/// }
/// ```
///
/// instead of 4 rounds of:
///
/// ```ignore
/// fn schedule_work(w: &mut [u32], t: usize) {
///     w[t] = sigma1!(w[t - 2]) + w[t - 7] + sigma0!(w[t - 15]) + w[t - 16];
/// }
/// ```
///
/// and the digest-related instructions allow 4 rounds to be calculated as:
///
/// ```ignore
/// use std::simd::u32x4;
/// use self::crypto::sha2::{K32X4,
///     sha256rnds2,
///     sha256swap
/// };
///
/// fn rounds4(state: &mut [u32; 8], work: &mut [u32x4], t: usize) {
///     let [a, b, c, d, e, f, g, h]: [u32; 8] = *state;
///
///     // this is to illustrate the data order
///     let mut abef = u32x4(a, b, e, f);
///     let mut cdgh = u32x4(c, d, g, h);
///     let temp = K32X4[t] + work[t];
///
///     // this is the core expression
///     cdgh = sha256rnds2(cdgh, abef, temp);
///     abef = sha256rnds2(abef, cdgh, sha256swap(temp));
///
///     *state = [abef.0, abef.1, cdgh.0, cdgh.1,
///               abef.2, abef.3, cdgh.2, cdgh.3];
/// }
/// ```
///
/// instead of 4 rounds of:
///
/// ```ignore
/// fn round(state: &mut [u32; 8], w: &mut [u32], t: usize) {
///     let [a, b, c, mut d, e, f, g, mut h]: [u32; 8] = *state;
///
///     h += big_sigma1!(e) +   choose!(e, f, g) + K32[t] + w[t]; d += h;
///     h += big_sigma0!(a) + majority!(a, b, c);
///
///     *state = [h, a, b, c, d, e, f, g];
/// }
/// ```
///
/// **NOTE**: It is important to note, however, that these instructions are not
/// implemented by any CPU (at the time of this writing), and so they are
/// emulated in this library until the instructions become more common, and gain
///  support in LLVM (and GCC, etc.).
pub fn compress256(state: &mut [u32; 8], block: &[u8; 64]) {
    let mut block_u32 = [0u32; BLOCK_LEN];
    BE::read_u32_into(block, &mut block_u32[..]);
    sha256_digest_block_u32(state, &block_u32);
}